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We describe a simulation algorithm for the dynamics of elastic membrane sheets over long length and time
scales. Our model includes implicit hydrodynamic coupling between membrane and surrounding solvent and
allows for arbitrary external forces acting on the membrane surface. In particular, the methodology is well
suited to studying membranes in interaction with cytoskeletal filaments. We present results for the thermal
undulations of a lipid bilayer attached to a regular network of spectrin filaments as a model for the red blood
cell membrane. The dynamic fluctuations of the bilayer over the spectrin network are quantified and used to
predict the macroscopic diffusion constant of band 3 on the surface of the red blood cell. We find that thermal
undulations likely play a role in the mobility of band 3 in the plane of the erythrocyte membrane.
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INTRODUCTION

Biological membranes are fundamental to a vast number
of biophysical processes. Of the various computational tech-
niques that have been developed to study lipid bilayer mem-
branes, fully atomistic simulations containing both lipid and
solvent molecules �1–5� are the most realistic, but are subject
to computational constraints. As a result, such simulations
are currently only able to achieve length and time scales on
the order of tens of nanometers and tens of nanoseconds,
respectively. Since many biological processes occur over
scales orders of magnitude larger, the phenomena that can be
studied at this level of detail are quite restricted. Many mod-
els have been developed to extend the distances and times
over which membrane-dependent processes can be simu-
lated. These models usually contain simplified lipids and wa-
ter molecules �6–13�. Less commonly, solvent may be
treated implicitly �14–17�. Although these methods are
promising, they remain under development. Widespread use
of simplified particle based models for membrane systems
has yet to become a reality.

Theoretical treatments of the lipid bilayer have thus far
been the only means for quantitative analysis of processes
that occur on the longest biologically relevant length and
time scales. An elastic model for fluid membrane sheets de-
veloped by Helfrich �18� has been successfully applied to
many different biophysical problems such as the flicker ef-
fect in red blood cells �19�, the interaction between
membrane-bound proteins �20–24�, and the formation of the
immunological synapse �25�. Overdamped thermal mem-
brane dynamics are captured within this framework via sto-
chastic coupling between the membrane sheet and an im-
plicit solvent environment �19,26–29�. Interactions beyond
the coupling between membrane and solvent �e.g., cytoskel-
etal attachments, extracellular matrices, experimentally ap-
plied forces, etc.� are only analytically tractable for harmonic
perturbations in sufficiently simple geometries �30–33�. Gen-
eral anharmonic interactions have been studied computation-
ally via Monte Carlo simulation �34–36�, but only in the

context of thermal �time-independent� averages.
In a recent letter, we introduced a Fourier Space Brownian

Dynamics �FSBD� simulation method �37� capable of study-
ing dynamics of lipid bilayers subject to anharmonic pertur-
bations. The method was shown to be capable of simulating
membrane dynamics out to long length scales �microns� and
slow time scales �seconds�, making studies of certain
cellular-scale biophysical phenomena feasible. In part, the
methodology component of this paper is a detailed account
of the work introduced in our preliminary report. Addition-
ally, the present work extends our previous treatment to sys-
tems with nonvanishing surface tensions. The application
component of this paper fully discusses our work on the
diffusion of band 3 protein on red blood cell membranes.
These results were briefly quoted in the letter version of this
work without significant analysis or discussion of results.

The motion of band 3 protein on the red blood cell �RBC�
membrane surface is known to deviate �38–42� from the
purely diffusive behavior predicted by the fluid mosaic
model �43,44�. The motion of the protein exhibits one diffu-
sion constant on small length scales and a smaller diffusion
constant over length scales longer than hundreds of nanom-
eters �45–51�. This behavior is known to be a result of the
steric interaction between the protein and the underlying net-
work of corrals formed by the spectrin cytoskeleton �42,52�
as illustrated in Fig. 1.

Although it is clear that the cytoskeleton plays a role in
protein mobility, the mechanism by which the protein es-
capes the corrals is not well established. Previous theoretical
studies have used simple, nonspecific potential barriers at the
corral boundary �53� or have assumed that rearrangements of
the spectrin network are necessary for a protein to escape
confinement �54–58�. In recent work �29,33�, we have alter-
natively proposed that thermal fluctuations of the membrane
may help promote the passage of band 3 by lifting it over the
cytoskeletal barrier. The models that have been studied in
this context include a free membrane �29� and a membrane
with localized harmonic pinning between the cytoskeleton
and bilayer �33�. In both prior studies, however, we were
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forced to neglect the nonharmonic repulsive interaction be-
tween membrane and spectrin filaments since our previous
computational methods were restricted to harmonic models.
The FSBD algorithm is applicable to anharmonic models and
allows us to model this repulsion explicitly. We find, in
qualitative agreement with previous models, that thermal
fluctuations should play a role in protein mobility on the
surface of the red blood cell. Quantitatively, the results of the
present study are in better agreement with experiment than
previously obtained.

This paper is organized as follows. First, we discuss our
model of protein mobility and quantify the macroscopic dif-
fusivity of band 3 on the RBC in terms of a dynamic gating
mechanism regulated by thermal undulations of the lipid bi-
layer above spectrin filaments. We then introduce the equa-
tions that specify the dynamics of the lipid bilayer and
present the FSBD simulation methodology in detail. Several
applications of our algorithm follow in the next two sections.
We first consider a number of analytically tractable harmonic
systems and compute correlation functions as well as quan-
tities related to the problem of protein mobility. In these
cases, comparisons between exact results and simulation are
possible and the FSBD algorithm is shown to be robust. For
nonharmonic systems, the only previously obtained results
are equilibrium averages from Monte Carlo simulations. We
verify FSBD in this case for a model of a stack interacting
membranes first studied by Gouliaev and Nagle �34�. Having
established the accuracy of FSBD, we return to the problem
of RBC protein mobility and improve upon previous har-
monic models by adding anharmonic repulsive interactions
between spectrin and the bilayer. This model for the RBC
membrane is simulated using FSBD leading to mobility es-
timates for band 3 protein moving in a realistic environment
at the red blood cell surface. Finally, we discuss the results
and conclude.

PROTEIN MOBILITY

We develop a model of protein mobility on the surface of
the red blood cell that depends on thermal fluctuations of the
membrane as the mechanism governing the rate of diffusion.
As discussed in the introduction, the structure of the cyto-
skeleton plays an important role in the mobility of band 3 in
the plane of the bilayer. Electron microscopy shows a series
of roughly triangular corrals formed by spectrin filaments
�59,60� that connect to the membrane by various proteins at
discrete locations �61–64�. Free diffusive motion occurs
within the corrals on length scales of tens of nanometers.
However, on longer length scales, the spectrin cytoskeleton
hinders the motion of the protein, although occasional hop-
ping between corrals is observed �51�. Various theories, dis-
cussed in the introduction and illustrated in Fig. 1, have been
proposed to explain how the protein escapes local confine-
ment. Although many of these mechanisms likely contribute
to the macroscopic diffusivity, we focus on the role of ther-
mal membrane undulations as a means for aiding the passage
of band 3 over the cytoskeletal barrier.

We use the same framework to describe the diffusion of
the protein as in previous work �29,33�. Experimentally, the
microscopic diffusion constant for band 3 within a corral D
=0.53 �m2 s−1 is observed to be two orders of magnitude
larger than the macroscopic diffusion constant Dmacro=6.6
�10−3 �m2 s−1 �51�, a fact attributed to the hindering of the
protein by the cytoskeleton �see Fig. 1�. We assume that the
protein cannot escape the corral unless the local height of the
membrane along the border of the corral exceeds the height
h0�6 nm �65� of the cytoplasmic domain of the protein. At
smaller separations between bilayer and spectrin, the protein
will collide with spectrin in any attempt to escape a corral.
Within our picture, thermal fluctuations of the membrane
provide the means by which the protein can be lifted over the
cytoskeletal barrier.

Since the protein cannot instantaneously diffuse over
spectrin, we also require that the height fluctuation greater
than h0 persist for a time of at least tD to allow diffusive
passage to occur. An estimate for this time scale is obtained
by assuming that the protein needs to diffuse a distance �
=7 nm �half the width of band 3 plus half of the width of the
spectrin� �57� in order to get over the cytoskeleton. The time
it takes the protein to diffuse this distance is based on the
value of the microscopic diffusion constant and approxi-
mated to be tD=�2 /4D=23 �s.

In our model, membrane shape is specified by a local
height h�r� as a function of the position r= �x ,y� in the xy
plane. This representation is called the Monge gauge �66�
and is chosen for several reasons. Given that we are inter-
ested in length scales �on the order of �100 nm� much
smaller than the size of the closed, biconcave-shaped red
blood cell ��7 �m�, the curvature of the surface can be
neglected and the membrane is essentially specified by the
h�r�=0 plane in the absence of stochastic forces. Later, we
show quantitatively that the thermal undulations away from
this reference plane are small so that we can neglect forces in
the xy plane and focus only on height fluctuations in the z
direction. The above considerations make the Monge param-
etrization a logical choice for describing the local height of

FIG. 1. Schematic illustration of the behavior of transmembrane
proteins in the red blood cell. The cytoskeleton immediately below
the membrane hinders protein transport by confining the protein
temporarily to a localized corral �a�. Jumps from one corral to an-
other occur slowly and have previously been postulated to result
from dynamic reorganization of the cytoskeletal matrix, either by
dissociation of spectrin tetramers �b� or thermal fluctuations in the
shape of the cytoskeleton �c�, or by infrequent crossing events
where the protein is thermally kicked hard enough to force its way
over a relatively static cytoskeleton �d�. The present study considers
the alternative possibility that shape fluctuations of the lipid bilayer
may allow for corral hopping �e�. This possibility has been previ-
ously investigated �29,33� using models that did not properly ac-
count for interactions between spectrin and membrane. The present
work is able to model such interactions explicitly via the Fourier
space Brownian dynamics simulation algorithm.
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the membrane due to random thermal fluctuations.
We now quantify the probability that the protein escapes

through the edge of the corral. Since we deny the passage of
band 3 unless the height of the membrane h�r� exceeds h0,
we define the equilibrium probability that h�r��h0 as

P�r� = ��„h�r� − h0…� , �1�

where � is the Heaviside step function. We also require that
the gap is open for a long enough time period for the protein
to diffuse out of the corral. An approximate way to quantify
this condition uses the correlated probability that h�r��h0 at
time t given that h�r��h0 at time 0

C�r,t� =
��„h�r,t� − h0…�„h�r,0� − h0…� − P2�r�

P�r� − P2�r�
. �2�

We have subtracted off the random, uncorrelated probability
that h�r��h0 at times 0 and t. For more details, see Appen-
dix C in Lin and Brown �33�. The product P�r�C�r , tD� re-
flects the approximate probability that a gap of size h0 will
open for a time tD. Note that the cytoskeletal barriers at the
edges are fixed at height zero and taken to be static. We
choose to neglect spectrin dynamics, which has been studied
elsewhere �as discussed in the introduction�, and focus on the
effect of membrane fluctuations.

A simple model of the diffusion of the protein leads to a
macroscopic diffusion constant. From this point forward, we
define L as the length of one side of the corral taken to be
roughly L�110 nm to agree with experiment �51�. We will
later study both square and triangular corrals. The probability
that the gap is large enough for the duration of the required
time tD averaged over one edge of the corral is

Q�tD� �
1

L
	

0

L

dx P�x�C�x,tD� . �3�

Within a square corral, the protein executes a random walk
on a square lattice with spacing �=7 nm. The protein has
probability Q of escaping if it happens to be on the corral
edge and moving in the proper direction to escape. Using this
model, a macroscopic diffusion constant is obtained for the
geometry of a square grid �33�

Dmacro =
ksqL

2

4
, �4�

where ksq= fsqQsq�tD� /4tD is the escape rate, and fsq= �4Nsq

−4� /Nsq
2 is the probability of being on a boundary square,

and Nsq=L /� is the number of lattice points on the boundary.
For the triangular geometry, the diffusion occurs between the
centers of equilateral triangles with sides length 2�
3 so that
the random walk is on a hexagonal lattice with steps length
�. The diffusion constant is �33�

Dmacro =
3ktrL

2

16
, �5�

where ktri= f triQtri�tD� /3tD, f tri= �3Ntri−3� /Ntri
2 , and Ntri

=
3L /2�. Our simulations provide explicit data for P�r� and
C�r , t�. Macroscopic diffusion constants follow immediately
from these quantities via Eqs. �4� and �5�.

THEORY OF MEMBRANE DYNAMICS

Our starting point is the elastic energy for a fluid quasi-
planar sheet �18,66� in the presence of external perturbations

H = 	
A

dr�Kc

2
��2h�r��2 +

�

2
��h�r��2� + Hint�h�r�� , �6�

where Kc is the bending modulus, � is the surface tension,
and A=L2 is the projected area of a square patch of mem-
brane. As noted in the preceding section, the membrane is
parametrized by the height h�r� where r= �x ,y� is the posi-
tion in the xy plane. The system is taken to be periodic with
period L in both x and y. The elastic model specified by Eq.
�6� is applicable down to wavelengths of �3–6 nm �67–69�.
Finer spatial resolution in the xy plane would require treat-
ment of molecular level detail, however the mesoscopic
questions addressed in the present work naturally suggest a
coarse graining scale larger than 6 nm.

The first term of H in Eq. �6� is an elastic energy related
to the mean curvature of the membrane and the second term
is a surface tension energy related to the total area of the
membrane. Both are approximations in the limit of small
fluctuations ��h�r��1� which we show later to be the ap-
propriate regime for the systems we study. The term
Hint�h�r�� allows for interactions between the membrane and
its surroundings and is allowed to be an arbitrary functional
of the height h�r�. For our purposes, we require only local
interactions and define a density Hint(h�r�) through

Hint�h�r�� = 	
A

dr Hint„h�r�… . �7�

More general forms such as

	
A

dr	
A

dr�Hint„h�r�,h�r��… �8�

or higher orders in a functional expansion are certainly pos-
sible and relevant in the case of other biophysical problems,
but not necessary in the context of the present study.

The dynamics of the system are specified by starting with
the Navier-Stokes equations for a set of interacting particles
in an incompressible fluid. In the low Reynolds number re-
gime, which we show later to apply to the red blood cell,
inertia can be neglected and the equation for the velocities of
each particle can be obtained �70�. Taking the continuum
limit and adding a random force, the stochastic dynamics of
the bilayer are described by a nonlocal Langevin equation
�28�

�h�r,t�
�t

= 	
−�

�

dr���r − r���F�r�,t� + 	�r�,t�� , �9�

where ��r−r��=1/8
�r−r� is the diagonal part of the
Oseen tensor, � is the viscosity of the surrounding fluid,
F�r , t�=−�H /�h�r , t� is the force per unit area on the mem-
brane, and 	�r , t� is a Gaussian white noise satisfying the
fluctuation-dissipation relation �70�
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�	�r,t�� = 0,

�10�

�	�r,t�	�r�,t��� = 2kBT�−1�r − r����t − t�� ,

where the inverse of ��r−r�� is defined by

	
−�

�

dr���r − r���−1�r�� = ��r� . �11�

The force per unit area in our case is

F�r,t� = − Kc�
4h�r� + ��2h�r� −

�Hint„h�r�…
�h�r�

. �12�

These equations completely specify the dynamics of the lipid
bilayer.

The most computationally efficient way to handle Eq. �9�
is to convert to Fourier space using

hk = 	
A

dr h�r�e−ik·r, �13�

h�r� =
1

L2�
k

hkeik·r. �14�

The equation of motion for each mode becomes

�hk�t�
�t

= �k�Fk�h�r,t�� + 	k�t�� , �15�

where �k=1/4�k, and 	k�t� now obeys

�	k�t�� = 0, �16�

�	k�t�	k��t��� = 2kBTL2�k
−1�k,−k���t − t�� . �17�

The values of the wave vectors are those consistent with the
periodic boundary conditions k= �m ,n�2
 /L and a short

wavelength cutoff is imposed by the restriction −N /2
m ,n�N /2 where N=L /�. For general potentials, the Fou-
rier transform of the force Fk depends on the entire set �hk�
making Eq. �15� a set of coupled equations. However, for the
free membrane �Hint=0�, we obtain Fk=−�Kck

4+�k2�hk and
the equations decouple

H =
1

2L2�
k

�Kck
4 + �k2�hk2, �18�

ḣk = − �Kck
4 + �k2

4�k
�hk + �k	k �19�

making the Fourier representation a natural basis for mem-
brane dynamics in the absence of interactions. In general
cases, the Fourier basis is preferable to real space approaches
for its natural handling of hydrodynamic effects without the
convolution of Eq. �9�.

We now show that the assumption of small fluctuations is
self-consistent for the case of the free membrane. From the
equipartition theorem, the mean square amplitude of hk is

�hk2� =
kBTL2

Kck
4 + �k2 �20�

which gives for the excitation of a single mode hk the mean
square displacement

�h2�r�� �
1

L4 �hk2� �
kBT

L2�Kck
4 + �k2�

. �21�

Picking out the dominant contribution, we use for the value
of k the longest wavelength mode 2
 /L. Using the physical
parameters for the red blood cell in Table I along with the
fact that we are concerned with system sizes L on the order
of hundreds of nanometers, the resulting average height of
the membrane is only several nanometers. We conclude that

TABLE I. Model parameters, the surface tension � is negligible under physiological conditions, but we have taken nonzero values in
several examples for purposes of illustration.

Parameter Description Value Reference

Kc Bending modulus 2�10−13 ergs a

� Cytoplasm viscosity 0.06 poise a

T Temperature 37 °C Body temperature

h0 Depth of cytoplasmic domain of band 3 6 nm b

D Band 3 diffusion constant 0.53 �m2 s−1 c

� Lattice spacing 7 nm d

tD Random walk time step 23 �s d

� Pinning constant 2.0�1014 ergs cm−4

� Repulsive potential energy scale 8.7�10−4 ergs cm−2

� Repulsive potential length scale 0.2 nm e

aBrochard and Lennon �19�.
bZhang et al. �65�.
cTomishige et al. �51�.
dBrown �29�.
ePodgornik and Parsegian �73�.
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we are safely in the regime of small fluctuations with
�h�r��1.

We can also justify the assumption of low Reynolds num-
ber in the absence of interactions. Given a particular k mode,
we establish a characteristic length d�2
 /k, and a charac-
teristic velocity

u =
1

L2 ḣk =
1

L2�kFk =
1

L2

Kck
4 + �k2

4�k
hk. �22�

Using the root mean square average in place of the amplitude
hk, the Reynolds number is approximated by

Re =
ud�

�
�

�

�2L

kBT�Kc +

�

k2� . �23�

Using the constants in Table I, we obtain Re�10−6 which
justifies our neglect of inertia in the hydrodynamic equations.

The k=0 mode, related to the center of mass of the sys-
tem hc.m.�hk=0 /L2, presents a unique complication. In Eq.
�9�, the velocity depends on a sum of hydrodynamic contri-
butions over all space, including periodic copies. For the k
=0 mode, the 1/r form of the Oseen interaction leads to a
divergence in �k=1/4�k. For systems that have a fixed cen-
ter of mass, we simply set �k=0 to zero and the problem is
avoided. For systems where this constraint is unnatural, we
use the value for the diffusion of a membrane of area A
given by �0�3L /8
� �33�. It is clear that this choice af-
fects the dynamics of the system in most situations. How-
ever, we always consider a specific limit in which the results
become independent of �0. We now show that in the pres-
ence of a confining potential and in the limit of large system
sizes, the variance of hc.m. goes to zero. In this case, the
center of mass is essentially fixed to its equilibrium value
�hk=0� and the motion of the center of mass vanishes. In this
limit, the numerical value chosen for �k=0 is irrelevant, pro-
vided a large enough value is chosen to ensure relaxation to
equilibrium over simulation time scales. To prove this hy-
pothesis, consider the addition of a harmonic uniform con-
fining potential

Hint�h�r�� = �	
A

dr h2�r� �24�

to the free membrane Hamiltonian. The variance in the cen-
ter of mass for this harmonically bound membrane is

�hc.m.
2 � − �hc.m.�2 =

kBT

�L2 �25�

and vanishes in the limit of large L as previously asserted.
The systems we consider that require a nonzero center of

mass are always studied in the limit of large L. However,
they do not have a simple uniform confining potential as
above, but rather a periodic set of localized pinning poten-
tials. These pinning interactions fix h�r�=0 at specific points
of the membrane and are relevant to the case of the red blood
cell. The important point is that the membrane center of mass
can be thought of as the average height of the membrane. In
the presence of a regular confining potential �constant or pe-
riodic� there will be some finite correlation length in the xy

plane for membrane fluctuations away from z= �hc.m.�. For
membranes sufficiently larger in linear dimension than this
length scale, hc.m. will reflect an average over independent
contributions stemming from patches of membrane separated
by more than a correlation length. An average of independent
random variables will display a variance that is inversely
proportional to the number of independent variables �71�.
Consequently, the variance in Eq. �25� is proportional to
1/L2. As L increases, the number of independent membrane
patches increases as the square of L. Although we have dis-
played this scaling explicitly only for the case of a constant
harmonic confining potential, the result is general to more
complicated confining interactions. For the pinning potential
considered later, we expect our results to be independent of
�0 when L is sufficiently large.

FOURIER SPACE BROWNIAN DYNAMICS (FSBD)

We now present a method of simulating the time evolu-
tion of the membrane based on standard Brownian dynamics
�72�. Although our equations are of the same form as the
traditional method, our dynamical variables are the ampli-
tudes of the Fourier modes. We make this choice largely due
to the fact that a fast Fourier transform is computationally
more efficient than the convolution in Eq. �9�. Additionally,
proceeding in Fourier space with a wave-vector cutoff pro-
vides a convenient method to coarse grain over microscopic
details.

We begin by integrating Eq. �15� from t to t+�t for small
�t,

hk�t + �t� = hk�t� + �kFk�t��t + Rk��t� ,
�26�

Rk��t� � �k	
t

t+�t

dt�	k�t�� ,

where the real and imaginary parts of Rk��t� are drawn from
Gaussian distributions of appropriate width �specified be-
low�. A minor complication arises in that h�r� is a real quan-
tity so that the Fourier modes obey hk

* =h−k. As a result, not
all of the amplitudes hk are independent and only N2 of the
real and imaginary components are evolved in time. Recall
that in a discrete Fourier transform, all modes are complex
except for four explicitly real modes if N is even, and one
explicitly real mode if N is odd. We consider only the case of
even N �the method for odd N follows in a straightforward
manner�. The modes given by �m ,n�= �0,0�, �N /2 ,0�,
�0,N /2�, and �N /2 ,N /2� are completely real and comprise
four independent dynamic variables for the system. We
choose the other independent modes to be �m ,n� for −N /2
mN /2 and 0nN /2, �m ,0� for 0mN /2,
�m ,N /2� for 0mN /2, and �N /2 ,n� for 0nN /2. The
remaining modes are complex conjugates of these modes as
required by the condition hk

* =h−k.
The considerations above also apply to the random force

	k� fk+ igk. From Eq. �16�, the fluctuation-dissipation rela-
tion for the purely real components is �fk�t�fk�t��
=2kBTL2�k

−1��t− t�� while the remaining independent com-
ponents exhibit �fk�t�fk�t��= �gk�t�gk�t��=kBTL2�k

−1��t− t��.
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Cross correlations between the amplitudes fk and gk are all
zero. Correspondingly, Rk��t� is drawn from a Gaussian dis-
tribution with zero mean and variance 2L2kBT�k�t for the
explicitly real modes and the real and imaginary parts of
Rk��t� are drawn from a Gaussian distribution with zero
mean and variance L2kBT�k�t for the remaining indepen-
dent modes.

Simulations proceed from the initial configuration h�r�
=0 for the sheet and evolve according to Eq. �26�. Explicitly,
a single time step in our Fourier space Brownian dynamics
simulation algorithm consists of the following:

�1� Evaluate the interaction part of the forces Fint�r�=
−�Hint /�h�r� in position space.

�2� Compute the bending forces Fk
bend=−Kck

4hk, surface
tension forces Fk

tens=−�k2hk, and evaluate the interaction
force Fk

int by Fourier transforming the result of the previous
step.

�3� Draw Rk��t�’s from the Gaussian distributions speci-
fied above.

�4� Compute hk�t+�t� using Eq. �26�. Inverse Fourier
transformation yields h�r� for use in the next iteration.

In practice, the time step �t is decreased until our results
converge. However, it is possible to estimate the appropriate
time step in some simple cases �see Appendix B� to verify
that our choices are reasonable. We consider some applica-
tions of FSBD in the following sections.

VERIFICATIONS OF FSBD

The free membrane

Models which contain harmonic forms of Hint can be
handled analytically �31–33� and used to verify the accuracy
of the FSBD algorithm. The simplest of these is the free
membrane for which Hint=0. The exact result for correla-
tions in both time and space is �see Appendix A�

�h�r,t�h�r�,t��� =
kBT

L2 �
k

e−�kt−t�

Kck
4 + �k2 cos�k · �r − r��� ,

�27�

where the relaxation frequencies are

�k =
Kck

4 + �k2

4�k
. �28�

We use the expressions above to compare the exact analyti-
cal results with those of the FSBD simulation.

For equal positions r=r�, the normalized height autocor-
relation function becomes

�h�t�h�0��
�h2�

=
�k

�Kck
4 + �k2�−1 e−�kt

�k
�Kck

4 + �k2�−1
. �29�

A plot of the exact and FSBD results are shown in Fig. 2
using the parameters for the red blood cell in Table I. We
choose our system size to be one corral with L=L
=112 nm which is roughly the size of red blood cell corrals
�51�. Since the membrane center of mass has equal probabil-
ity of being anywhere in space, we fix its value to hc.m.=0 as
in previous work �29,33�. The membrane is discretized in
position space with L=N� and �=7 nm as described in the
section on protein mobility. Also in Fig. 2, we plot the equal-
time correlation in position from FSBD along with the ana-
lytical expression

�h�r�h�r���
�h2�

=
�k

�Kck
4 + �k2�−1 cos�k · �r − r���

�k
�Kck

4 + �k2�−1
.

�30�

The negative correlation near a distance of L /2 away from
the center is an indication of the dominance of the wave-
length L modes.

Under physiological conditions, the bilayer surface ten-
sion � is negligible. However, at length scales exceeding
corral dimensions, pinning between bilayer and cytoskeleton
leads to a finite effective surface tension for the composite
membrane system �bilayer+spectrin� while leaving the
shorter wavelength tension zero within experimental uncer-
tainty �74�. We stress this difference between bilayer tension
and effective tension of the composite membrane to avoid
possible confusion. The effective tension is unimportant to
the present work as we are interested in fluctuations affecting
a single corral. For convenience, we have chosen a geometry
where all pinning sites are coplanar, which translates to an

FIG. 2. In the left panel, we plot the normal-
ized time correlation function at the midpoint of
the edge of the corral x=x�=L /2 for t�=0. In the
right panel, we plot the correlation in position
along the edge of the corral x for fixed x�=L /2
and equal times t= t�. The averages are computed
over all corral edges with length L=112 nm. The
simulations are done with a time step of �t
=1 ns for a total time of t=0.1 s using the param-
eters in Table I. For a discussion of the choice of
the time step used, see Appendix B.
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infinitely large long wavelength effective tension. This “ten-
sion” does not affect statistics of the fluctuations of interest
to us.

To illustrate the effect of a nonzero bilayer surface ten-
sion, �, we choose a value �= �2
 /L�2Kc that cuts the fluc-
tuations of the longest wavelength mode in half as can be
seen from Eq. �27�. From the relaxation frequencies in Eq.
�28�, the relaxation time of that mode is half of the zero
tension value. Both observations are apparent in Fig. 3 where
the unnormalized correlation functions are plotted. The effect
of a finite surface tension is to decrease the amplitude of
fluctuations and increase their relaxation rate.

Returning to the problem of protein mobility, we calculate
the value of the macroscopic diffusion constant for the free
membrane. For harmonic models, it is possible to derive ana-
lytical expressions for P�r� and C�r , t� in Eqs. �1� and �2�.
The results are �33�

P�r� = 1
2 erfc�h̄�r�� , �31�

where the dimensionless variable h̄�r� is defined as

h̄�r� �
h0


2�h2�r��
, �32�

and

C�r,t� =
1

P�r� − P2�r�� 1

2


�	

h̄�r�

�

dw erfc�H�w,r,t��e−w2�
− P�r�� , �33�

where

H�w,r,t� �
h̄�r� − A�r,t�w

1 − A2�r,t�

, �34�

and A�r , t� is the normalized autocorrelation function

A�r,t� �
�h�r,t�h�r,0��

�h2�r��
. �35�

The expressions in Eqs. �31� and �33� allow us to calculate
P�r�C�r , tD�, and therefore Dmacro, solely from knowledge of
the time correlation function. We obtain Dmacro=9.2
�10−4 �m2 s−1 which matches the value obtained by FSBD.

However, the experimental result Dmacro=6.6
�10−3 �m2 s−1 �51� is larger, a discrepancy which we at-
tempt to address in the following sections by adding more
realistic interactions.

The pinned membrane

As discussed in the protein mobility section, the lipid bi-
layer is locally pinned to the cytoskeleton at discrete points.
A more realistic model than that of the free membrane con-
tains the interaction �33,37�

Hpin�h�r�� =
�

2
h2�r��

i

exp�− � r − Ri

�/4
�2� , �36�

where � in Table I is sufficiently large that the height is
essentially confined to zero near the pinning sites Ri labeled
by the index i. The potential locally acts on an area ��2

�which is also approximately the cross-sectional area of the
anchoring protein�. We use in this section the simple pinning
geometry of a square grid with pinning sites at every mul-
tiple of L.

The pinning of the membrane allows us to increase the
system size to large L so that each individual corral is al-
lowed to have a nonzero center of mass even though the
entire system maintains hc.m.=0. We use a system size of L
=4L chosen such that our results no longer change with fur-
ther increases in L. The resulting configurations of the corral
are more realistic since we expect that in the real red blood
cell, the center of mass of individual corrals will fluctuate.
By increasing the system size, we also allow wavelength
�2L modes that were not present in the free membrane.
Since the longer wavelength modes are dominant, we expect
a strong contribution from these modes.

The pinning potential couples the modes in the Hamil-
tonian and the equations of motion for the amplitudes. A
detailed analysis of the diagonalization procedure used to
obtain exact results for the time autocorrelation function is
given in Brown �33� �with a brief discussion in Appendix A�
and a comparison with FSBD is given in Fig. 2. The slower
decay of the correlation function reflects the inclusion of the
longer wavelength modes discussed above. The results in
Ref. �33� combined with the results in Appendix A give the
exact result for the position correlation function which is
compared to FSBD in Fig. 2. The correlations are positive

FIG. 3. The same plots as in Fig. 2 except
unnormalized and with surface tension �
= �2
 /L�2Kc. The time correlations fall off more
rapidly and height of the undulations is quenched
as predicted by Eqs. �29� and �30�.
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over an entire single corral, indicating the dominance of the
wavelength 2L modes. A plot of the amplitude �hk2� as a
function of the wavelength �=2
 /k in Fig. 4 does indeed
show a peak at wavelength �=2L.

Knowledge of the time correlation function allows us to
compute the macroscopic diffusion constant using the results
of the protein mobility section. Comparison with the direct
simulation again yields the same results within error as
shown in Fig. 5. The value of the macroscopic diffusion
constant calculated for this model 7.0�10−2 �m2 s−1 is
about an order of magnitude larger than the experimental
value. The increase in Dmacro over the free membrane model
is a result of the persistence of correlations as shown in Fig.
2 as well as an increase in height fluctuations. Both effects
are due to the longer wavelength �2L modes which we later

see are quenched to some extent by the repulsive interaction
of the cytoskeleton in our more detailed �anharmonic� simu-
lations.

Nonharmonic interactions

The FSBD algorithm is most useful when applied to sys-
tems which cannot be treated analytically. One such system,
studied previously by Gouliaev and Nagle �34�, is a model
which mimics the potential of a stack of membranes. The
interaction term used by these authors is given by

Hwall�h�r�� = 1
2 �V„a + h�r�… + V„a − h�r�…� , �37�

where V�z�=A� exp�−z /��−H /12
z2, and A, H, and � are
constants. Hard walls are taken to be located at z= ±a. Here,
the physical quantities of interest are the root mean square

displacement hrms�
h2 and the pressure P given by �34�

P = −
�Hwall

�a
, �38�

where the bar indicates an average over space and time. The
expression for the pressure reflects noncontact interactions
with the wall. For the parameter sets of interest, the pressure
due to collisions with the hard wall are negligible �34�.

We have verified in previous work �37� that the results
from FSBD match those of the Monte Carlo simulations
found in Nagle �34�. All of the previously studied cases as-
sume vanishing tension. We extend several of these cases by
including a finite surface tension and comparing the results
of FSBD with Monte Carlo calculations in Table II. The
surface tension is chosen to be the same value �
= �2
 /L�2Kc as in the preceding section. As expected, we see
a decrease in both the height of the fluctuations and the pres-
sure. It should be noted that the hydrodynamic flows are
expected to be confined for a stack of membranes. The cor-
rect dynamics are obtained by replacing the Oseen tensor
with a modified form incorporating impermeable wall
boundary conditions �75–77�. However, static equilibrium
properties are completely independent of the hydrodynamic
kernel and therefore our use of the usual Oseen tensor for
unconfined geometries presents no problems for the calcula-
tion of height fluctuations and pressure.

To explain the relatively small drop in hrms, we first note
that we have chosen a value of � such that the bending and
surface tension energies are equal for the longest wavelength
modes �see Eq. �18��. Since these modes dominate, the ener-
gies of both are approximately equal. We assess the relative
importance of the interaction with the wall by comparing
hrms with and without the term Hwall. For a membrane with
only a bending energy term, the average root mean square
height is �10 Å for the first parameter set and �30 Å
for the second. Adding the interaction of the wall strongly
suppresses fluctuations as can be seen by comparing to Table
II. Since Hwall dominates, the addition of a surface tension
with energy on the order of the bending energy does little to
further quench undulations. The pressure, however, has a
term that depends exponentially on the height. Small changes
in h�r� can have a larger effect as seen in Table II.

FIG. 4. Plot of the amplitude �hk2� as a function of the wave-
length �=2
 /k. We have set n=0 in the wave vector k
= �m ,n�2
 /L to study the modes parallel to the edge of the corrals.
The system size is L=4L.

FIG. 5. Plot of P�x�C�x , tD� along the edge of the corral x for a
pinned membrane of system size L=4L with L=112 nm. The pa-
rameters used are the same as in Fig. 2. The error bars are calcu-
lated from the standard deviation of the mean of 100 samples each
consisting of an average over all corral edges for a block of 1 ms.
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REPULSIVE CYTOSKELETAL INTERACTIONS

We return to the problem of protein mobility and consider
the addition of a repulsive interaction between the cytoskel-
eton and the membrane. For this nonharmonic model, our
only means of obtaining quantitative results is through the
use of the FSBD algorithm. We add to the pinning term Hpin
an additional potential due to the cytoskeleton. The repulsive
interactions between the spectrin and lipid bilayer are ap-
proximated as a short-range hydration potential of the form
�73�

Hrep�h�r�� = ��
i

e−h�r�/� exp�− �aix + biy + ci

�/4
�2� ,

�39�

where aix+biy+ci=0 specifies a particular finite linear seg-
ment of spectrin between pinning sites. The potential is re-
stricted to a line of width of �� �approximately the width of
the spectrin�. In accordance with experiments on repulsive
interactions between membranes �80�, the steepness of the
potential is taken to be �=0.2 nm. The value �=kBT /100�2

is chosen to force the potential to rise rapidly once h�r� is
less than zero.

As a result of the asymmetry of the cytoskeletal repulsion
in the z direction, it is unnatural to fix the center of mass at
zero. As discussed previously, we choose the value �0
=3L /8
� for the dynamics of hc.m.. However, by perform-
ing the simulation in the limit of large system size L, the
center of mass becomes essentially fixed to its natural equi-
librium value and the choice of �0 does not affect the results.
For L�4L, the results are independent of the system size as
seen in Fig. 6. As an additional check, we note that using
�0=0 and hk=0 fixed to the equilibrium value �hk=0� gives
results that are indistinguishable within statistical error.

The presence of spectrin filaments below the membrane
surface has the potential to alter hydrodynamics inside the
cell relative to a membrane suspended in a homogeneous
medium. It has been argued that the possible confinement of
hydrodynamic flow due to the cytoskeleton might be incor-
porated through a generalized interaction kernel in Eq. �9� in

lieu of the Oseen tensor �31�. While this approach may be
valid over length scales of hundreds of nanometers and
longer, we are most interested on dynamics at smaller wave-
lengths where such an approach seems questionable. Since
cytoskeletal filaments occupy a relatively small fraction of
the total area beneath the membrane surface, it seems rea-
sonable to neglect their impact on hydrodynamics. Hence-
forth, we make this assumption and treat the dynamics of the
RBC lipid bilayer as though the only effect of spectrin fila-
ments is to modify the energetics of bilayer conformations.
Hydrodynamic consequences of the spectrin meshwork are
ignored.

We study both the square corral geometry shown in Fig. 7
and the triangular corral geometry in Fig. 8 both with L
=112 nm chosen to agree with the experimental confinement
length of L�110 nm �51�. All simulations were done with a
time step of �t=1 ns for a total time of t=0.1 s. We plot the

TABLE II. Comparison between MC and FSBD: The root mean square height hrms�Å� and pressure P�ergs/cm3� for a membrane
confined between two walls using N=8, L=700 Å, T=323 K, and A=109 ergs/cm3. In the nonzero surface tension cases, the value �
= �2
 /L�2Kc is used. The Monte Carlo data in the first column ��=0� is taken from Gouliaev and Nagle �34� while those of the second
column ���0� are from our own Monte Carlo. For the FSBD, a time step of �t=0.01 ns was used and the total time of each simulation was
t=1 ms. The errors are calculated using standard statistical estimates �78,79�.

Parameter set hrms �MC, �=0� hrms �MC, ��0� hrms �FSBD, ��0�

�1� 4.3366±0.0013 4.2087±0.0022 4.2031±0.0019

�2� 6.1225±0.0030 6.0868±0.0019 6.0851±0.0017

Parameter set P �MC, �=0� P �MC, ��0� P �FSBD, ��0�

�1� 173470±170 156690±280 156180±170

�2� 38500±1000 26090±640 26240±320

Parameter set �1�: H=0�10−14 ergs, Kc=10−12 ergs, �=1.8Å, a=20 Å

Parameter set �2�: H=3�10−14 ergs, Kc=10−13 ergs, �=1.4 Å, a=17 Å

FIG. 6. Plot of the macroscopic diffusion constant as a function
of the system size in units of L for the square geometry. The simu-
lations were done with a time step of �t=1 ns for a total time of
t=0.1 s. The error bars are calculated from the standard deviation of
the mean of 100 samples each consisting of an average over all
corral edges for a block of 1 ms. Since there are more corrals and
therefore more independent samples as the system size increases,
the error decreases with increasing L.
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equilibrium probability P�x� that the height is greater than h0

for both the square and triangular geometry in Fig. 9. For
comparison, the results for the same systems without the
cytoskeletal interactions are also plotted. The repulsive inter-
action pushes the center of mass above zero and thus in-
creases the probability that the height is greater than h0. In
Fig. 10, we plot C�t� for the same systems.

The addition of the cytoskeleton increases the relaxation
rate of height fluctuations, a fact attributed to the suppression
of the wavelength 2L modes. These modes are quenched
since the membrane must stay above h�r�=0 at the corral
edges while being pinned at every multiple of L. This con-
dition is difficult to satisfy for wavelengths longer than L. To
verify this hypothesis, we study the amplitudes of the modes
that run in a direction parallel to the corral edges in the x

direction. For the square corral geometry, a plot of the am-
plitudes in Fig. 4 reveals a peak for modes of wavelength L,
showing that the longer-lived wavelength 2L modes no
longer dominate. With pinning sites spaced every L and re-
pulsions acting in between, the square corral geometry forces
the membrane to adopt �on average� a configuration that has
period L in the x �and y� direction. Troughs occur at the
pinning sites with intermediate peaks induced by the cytosk-
eletal repulsion. In the absence of cytoskeletal repulsions,
period L modes hold no special dominance �Fig. 4�. In the
case of the triangular corral geometry, the wavelength L
modes are suppressed. A wavelength L mode running parallel
to the base of a triangular corral that is pinned at all corners
must have a maximum at the center of the corral edge. This
maximum, however, is energetically unfavorable given the

FIG. 7. �Color online� Sample configuration for a membrane
�L=3L� with square pinning and cytoskeletal repulsion. The pin-
ning sites are located at every multiple of L and indicated by
spheres. The repulsive interaction due to spectrin is localized along
the black lines which connect between the pinning sites. The z axis
is expanded to help visualize fluctuations in the membrane.

FIG. 8. �Color online� Sample configuration for a membrane
�L=2L� with triangular pinning and cytoskeletal repulsion. The pin-
ning sites are located at �1/2 ,0�, �3/2 ,0�, �1,0�, �1,1�, �1,2�,
�2,1 /2�, and �2,3 /2� in units of L and are indicated by spheres. The
repulsive interaction due to the spectrin is localized along the black
lines which connect between the pinning sites. The z axis is ex-
panded to help visualize fluctuations in the membrane.

FIG. 9. Plot of the probability that the membrane height exceeds
h0 as a function of the distance x along the edge of the corral for a
system size L=4L. The repulsion due to the cytoskeleton pushes
the membrane above h�r�=0 and therefore increases the probability
of opening a gap of size h0. The error bars for the simulation data
are smaller than the symbol size.

FIG. 10. Plot of C�t� for x=L /2 for a system size L=4L. The
amplitudes of the longer-lived wavelength 2L modes are quenched
by the cytoskeletal repulsion and C�t� mostly reflects the wave-
length L modes. The error bars for the simulation data are smaller
than the symbol size.
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pinning site at the tip of the triangle above the base. The
wavelength L modes do not fit as naturally into the triangular
pinning geometry as they do for the square geometry. A peak
at L in Fig. 4 is not expected for the triangular geometry, and
none is observed.

The product P�x�C�x , tD� is shown in Fig. 11. Although
the membrane has a larger probability of being above h0 at
the edge of the corral, these gaps are short-lived, as discussed
above. The overall effect is a reduction in the escape prob-
ability and thus the macroscopic diffusion constant. We com-
pare the results in this study against those of the case without
the cytoskeletal repulsion of our previous study �33�. For the
square geometry, Dmacro= �3.44±0.11��10−2 �m2 s−1 com-
pared to Dmacro=7.0�10−2 �m2 s−1 in the absence of repul-
sive interactions while for the triangular geometry, Dmacro
= �2.06±0.13��10−2 �m2 s−1 compared to Dmacro=6.6
�10−2 �m2 s−1 in the absence of repulsive interactions.

The values obtained from this model are still �3 to 5
times larger than the experimentally observed value of
Dmacro=6.6�10−3 �m2 s−1 �51�. The discrepancy is perhaps
a result of several approximations in our theoretical treat-
ment. All interactions with the protein are neglected except
the one between band 3 and spectrin approximated by the
requirement of an opening in the membrane of size h0 at time
0 and tD. The cytoskeleton in our model is also completely
static. We have ignored the opening of gaps by spectrin dis-
sociation at the corral edge, a mechanism that has been stud-
ied elsewhere �54–58�. Other forms of cytoskeletal motion,
such as thermal fluctuations of the spectrin filaments �81�,
have also been ignored.

Mathematically, our estimation of the escape probability
proceeds via calculation of P�r�C�r , t�, the correlated prob-
ability that the height of the membrane is greater than h0 at
both times 0 and tD. Historically, we chose to study the quan-
tity P�r�C�r , t� because analytical expressions could be ob-
tained for cases involving harmonic potentials �29,33�. Using
FSBD simulations, it is also possible to numerically evaluate

the probability, Popen�r , t�, that the height of the membrane
exceeds h0 for the entire time interval �0, tD�. The resulting
value of the macroscopic diffusion constant in this case is
Dmacro=3.0�10−3 �m2 s−1 for the square pinning geometry
with repulsive cytoskeletal interactions. This value is ap-
proximately a factor of 10 smaller than that obtained via the
P�r�C�r , t� calculation. Requiring the membrane to remain
higher than h0 for the duration of the diffusive escape event
is a stricter condition than that imposed by the correlated
probability �29�. The probability for an “opening” event to
take place drops in this approximation as does Dmacro.

We emphasize that both P�r�C�r , t� and Popen�r , t� gating
calculations are approximations that we use in lieu of a
model with realistic potentials acting between the protein,
cytoskeleton, and membrane. We lack detailed knowledge of
these potentials and it is thus impossible to guess which
model is most appropriate. For simplicity and consistency
with prior work, we have presented the results of this paper
exclusively in terms of P�r�C�r , t� calculations. Interestingly,
the experimental value of the macroscopic diffusion constant
lies between the values predicted from the two methods of
calculation.

We discuss briefly the dependence of the macroscopic dif-
fusion constant to the parameters in our model. The value of
Dmacro varies between �4.5−1.8��10−2 �m2 s−1 for h0 be-
tween �4–8� nm for the square geometry �see Fig. 12�. The
sensitivity here is less than in the case without repulsion
where the variation is �17−2.5��10−2 �m2 s−1 in the same
range of h0 �33�. Although h0=6 nm is firmly established for
the band 3 proteins studied experimentally, this height de-
pendence of diffusion is an experimentally testable predic-
tion of our model. The bending rigidity of the bilayer can
also be modified. If we double the value of Kc, the macro-
scopic diffusion constant decreases by an order of magnitude
to 2.2�10−3 �m2 s−1. Given that the observed value of the
bending rigidity may be artificially low due to metabolic
processes in the red blood cell acting at long wavelengths
�82–84�, it is possible that a larger value for Kc is more
appropriate, which would bring Dmacro from the simulation
closer to the experimentally observed value.

FIG. 11. Plot of P�x�C�x , tD� as a function of the distance x
along the edge of the corral for a system size L=4L. Error bars are
calculated from the standard deviation of the mean of 100 samples
each consisting of an average over all corral edges for a block of
1 ms.

FIG. 12. Plot of Dmacro as a function of the height of the cyto-
plasmic domain of the diffusing protein, h0, for a membrane with a
square pinning geometry and repulsive cytoskeletal interactions.
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We have also assumed constant values of several param-
eters that in general depend on other factors. Although the
bending rigidity Kc is expected to vary near the protein and
the pinning sites, we use a constant value over the entire
membrane. Similarly, the value of the microscopic diffusion
constant D is taken to be constant even though it is expected
to vary in the presence of other proteins as well as the pin-
ning sites. However, these effects are built into the the ex-
perimental values of Kc and D that we employ in an aver-
aged sense.

It should also be noted that metabolic processes in the red
blood cell are expected to affect membrane height fluctua-
tions �82–84�. However, the bending rigidity is measured in
the presence of this activity and the value of Kc incorporates
these effects, albeit in an approximate way. In other words,
the values we have used for the elastic constants in this study
reflect the amplitude of undulations observed under physi-
ological conditions where energy is being expended by the
cell. The use of such effective parameters within a frame-
work of thermal equilibrium fluctuations is clearly a severe
approximation, yet has a long history of success in explain-
ing red blood cell dynamics. Incorporating realistic nonther-
mal energy sources within an elastic membrane model is of
interest and may eventually lead to a more satisfactory un-
derstanding of the red cell membrane than the phenomeno-
logical approach considered here.

A further consideration is the irregularity of the corral
shapes and sizes in the red blood cell. The single particle
tracking experiments done by Tomishige et al. �51� show that
the corral sizes vary from 50 to 200 nm and that the macro-
scopic diffusion constant can vary from 101 to 10−3 �m2 s−1.
The experimental values we have quoted within this work for
both L and Dmacro are the median values. The large variation
in experimental data could also account for some of the dis-
crepancy between experiment and modeling. Despite the ap-
proximations listed above, our results clearly indicate that
membrane fluctuations likely play a role in the global diffu-
sion of band 3 on the red blood cell. At the very least, it is
not possible to ignore such dynamics a priori as has previ-
ously been assumed.

CONCLUSION

We have introduced a Fourier space Brownian dynamics
simulation method that allows for the time evolution of lipid
bilayers over long length and time scales. The algorithm is
general enough to handle arbitrary interactions between
membrane and environment and should therefore be useful
for studying many processes inaccessible to more detailed
simulations. We have verified the accuracy of FSBD by com-
paring to several cases for which exact answers are available.
These cases include dynamical quantities for harmonic inter-
actions and equilibrium quantities for nonharmonic interac-
tions. The FSBD algorithm, however, goes further by treat-
ing the dynamics of nonharmonic systems. Our method is
quite general, with potential applications to a wide variety of
biophysical processes including fluctuations of supported bi-
layers �85�, nonthermal shape fluctuations of vesicles
�86,87�, and polymerization of cytoskeletal filaments against

membrane surfaces �88�. We are currently pursuing these and
related questions.

We have exploited the generality of FSBD in our exami-
nation of the effects of thermal membrane undulations on
protein mobility. Past studies �29,33� considered free mem-
branes and membranes pinned at localized sites to the under-
lying cytoskeleton. As an improvement, we considered a re-
pulsive potential between the bilayer and spectrin filaments
while keeping the localized pinning sites. This model more
accurately reflects the physical situation and dynamics can
only be treated by the FSBD method due to the nonharmonic
nature of the interaction.

In this model, the repulsive forces push the membrane
above the plane at the corral edges and restrict the set of
energetically favorable configurations. The modes of wave-
length 2L are suppressed beyond that of the model contain-
ing only pinning sites, a result that is expected based on the
fact that these modes cannot simultaneously satisfy both the
pinning condition and the repulsion at the corral edges.
While the wavelength L modes dominate in the square pin-
ning geometry, these are further suppressed in the triangular
system where they do not naturally fit. In the end, we find
that the macroscopic diffusion constant predicted by our
model is several times larger than the experimental value.
The discrepancy is due to the various simplifications in our
treatment discussed in the preceding section. However, we
believe that the qualitative implications of our study are un-
ambiguous. Thermal membrane undulations are likely a con-
tributing factor and a possible mechanism for the macro-
scopic diffusion of the proteins on the surface of the red
blood cell.

One prediction of this model that seems amenable to ex-
perimental verification is the increase of the macroscopic dif-
fusion constant with decreasing height of protein cytoplas-
mic domain, h0. In principle, different proteins could be
studied and/or proteins engineered with smaller or larger cy-
toplasmic domains. Experiments do show that Dmacro in-
creases after cleaving the entire cytoplasmic domain of the
protein �51�, but we are unaware of any systematic studies of
diffusion with varying h0. Other seemingly “verifiable” pre-
dictions �temperature dependence, viscosity dependence, Kc
dependence, etc.� are not anticipated to be captured correctly
within the simple picture presented here. Changing tempera-
ture will lead to biochemical changes not anticipated by our
model that may influence other physical properties. Altering
Kc and/or cytoplasm viscosity will require chemical changes
that are also likely to affect this complex system in unpre-
dictable ways.
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APPENDIX A: HEIGHT CORRELATIONS

We compute height correlations in space and time in Fou-
rier space
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�h�r,t�h�r�,t��� =
1

L4 �
kk�

�hk�t�hk��t���e
ik·r+ik�·r�. �A1�

The height h�r� is real, and therefore the amplitudes obey the
relation hk

* =h−k which we use to simplify the expression

�h�r,t�h�r�,t��� =
1

L4 �
kk�

�H�k,r,t�H�k�,r�,t��� , �A2�

where we have defined H�k ,r , t��ak�t�cos k ·r
−bk�t�sin k ·r and hk=ak+ ibk. Computing the correlation
functions is equivalent to computing the correlations be-
tween the real and imaginary parts of the amplitude hk.

The free membrane model decouples in Fourier space and
is equivalent to an Ornstein-Uhlenbeck process for each
mode �29�. The correlation functions are

�ak�t�ak��t��� =
kBTL2e−�kt−t�

2Kck
4 ��k,k� + �k,−k�� �A3�

and similarly for the imaginary parts with correlations be-
tween real and imaginary components equal to zero. Using
the above, we recover Eq. �27�.

For the pinned membrane, the modes become coupled.
Using a diagonalization procedure, the eigenmodes are once
again Ornstein-Uhlenbeck processes �33� and the correla-
tions in amplitude become

�cq�t�cq��t��� = 
�q�q��
i

L
2��i

UqiUq�ie
−�it, �A4�

where q label only the independent modes �since the k mode
is equivalent to the −k mode�, cq is a vector of the modes
��aq� , �bq��, the eigenmodes are labeled by the index i, and �i

and Uqi are the eigenvalues and eigenvectors, respectively, of
the matrix �A11� defined in Ref. �33�. Once the correlations
between all amplitudes are known, the full correlation func-
tion follows by plugging into Eq. �A2�.

APPENDIX B: TIME STEP ESTIMATES

We show for the free membrane that the value of the time
step chosen is reasonable, although for more complicated
cases, we reduce the time step until the results stabilize
within error bars. The treatment here closely follows that of
Schulten and Kosztin �89�. The equation of motion for each
of the modes for the free membrane is

ḣk = − �khk + 	k. �B1�

We define hk�ak+ ibk, and use Eq. �26� and the width of
R��t��L2kBT�k�t to obtain the form of the equation of
motion for the real part of each mode �and similarly for the
imaginary part�

�ak = A�t + B
�t , �B2�

where

A = �kak
0 = �k


�ak
2� ,

�B3�

B = 
L2kBT�k.

We have taken the initial amplitude ak
0 and also B to be

typical values one standard deviation from the mean. Solving
for the time step, we obtain

�t =
1

2A2 �B2 + 2A�ak − B
B2 + 4A�ak� , �B4�

where the value of �ak is determined by the accuracy desired
in the linear approximation of the equation of motion. The
energy of each mode is

V�ak� =
Kck

4

L2 ak
2 �B5�

and the change in energy over the time step in the linear
approximation is

�V�ak� = V�ak
0 + �ak� − V�ak

0� −
dV�ak

0�
dak

�ak, �B6�

which leads to

�ak =
�V�ak�L2

Kck
4 . �B7�

A value of �V�ak�=0.1kBT gives for the largest and smallest
wave vector,

�t = 0.3 ns for k =
2


L
�8,8� , �B8�

�t = 500 ns for k =
2


L
�1,0� . �B9�

The Hamiltonian and the equations of motion show that the
long wavelength modes dominate in the quantities that we
compute. The value �t=1 ns is reasonable given the agree-
ment between the analytical results and the simulation.

If the membrane is locally pinned with the potential

V =
��2

2
h2 �B10�

and we assume that this area is a sphere of radius � /2 un-
dergoing diffusion with the drag force given by Stokes’ law,
then the Langevin equation is

ḣ�t� =
1

3
��
�− ��2h�t� + f�t�� , �B11�

where

�f�t�f�t��� = 2kBT�3
�����t − t�� . �B12�

Using the same equations as for the free membrane

A =
��2
�h2�

3
��
,

�B13�
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B =
 2kBT

3
��
,

where


�h2� =
kBT

��2 . �B14�

Using �V=0.1kBT, we get a time step of �t=0.3 ns. We find,
however, that �t=1 ns is adequate as indicated by the agree-
ment with the analytical results in Fig. 2.
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